e) Exercice, étude cinétique

Schéma de résolution :

$$RX = R^+ + X^- (k_1 \text{ et } k_{-1})$$

$$R^+ + H_2O = ROH_2^+ (k_2 \text{ et } k_{-2})$$

Pour simplifier, on admet que la déprotonnation est quasi instantanée et non renversable, on s'intéresse à $v_2 = k_2[\mathrm{R}^+][\mathrm{H}_2\mathrm{O}]$.

On peut alors appliquer l'AEQS à R⁺: $\frac{L(R^+)}{dk} = \sqrt{1 - \sqrt{1} - \sqrt{1 + \sqrt{2} - 2}} \implies \sqrt{2} + \sqrt{2}$

Réactions qui le créent : v_1 et v_{-2} : k_1 doit être assez proche de k_{-2} vu les profils, mais $[\mathrm{ROH}_2^+] \ll [\mathrm{RX}]...$ on néglige donc v_{-2} devant v_1 sans problème.

Réaction qui détruisent le carbocation : attaque par deux nucléophiles concurrents : ${\rm X}^-$ et ${\rm H}_2{\rm O}$.

Écrire l'expression générale de v_{-1} et v_2 , en déduire $[R^+]$ et donc l'expression de v_2 .

$$\Rightarrow k_1[RX] \approx k_2[R^+][H_{20}] + k_{-1}[R^+][X^-]$$

=)
$$(R') = \frac{k_1(RX)}{k_2(X') + k_2(H_2)}$$

=)
$$N_2 = \frac{k_1 k_2 (R \times) (k_{10})}{k_{-1} (\times -) + k_1 (\mu_{10})}$$

(kg: la ancentation (420) intervient également abdirectement dans les voleus des ki car au devisies dépendent de la notire du solvent dont l'eau

Conclusion : La loi est complexe (sans ordre) à cause de la compétition entre les deux nucléophiles.

A priori, $k_{-1}>k_2$ car ${\rm H_2O}$ est un nucléophile faible, mais dans le cas où ${\rm [X^-]}\ll {\rm [H_2O]}$ (valide car l'eau est le solvant, à moins qu'on ait ajouté du ${\rm X^-}$ dans le milieu), la relation se simplifie et on retrouve un ordre 1 ${\it T}$ ${\it A}$ ${\it A}$ ${\it C}$ ${\it C}$.