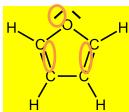
Interrogation écrite de chimie

Corrigé

Mercredi 11 janvier 2023

1) Molécules organiques

Pour chacune des molécules suivantes, identifier la nature de la fonction chimique oxygénée (ou groupe caractéristique) qu'elle contient et donner son nom en nomenclature systématique


		fonction	nom de la molécule
a)	OH	<mark>acide</mark> <mark>carboxylique</mark>	<mark>acide hexanoïque</mark>
b)		<mark>cétone</mark>	4-éthylhexan-3-one
c)		aldéhyde	3,4-diméthylpent-2-énal

2) Le furanne

La formule topologique du furanne est la suivante :

a) Reprendre la formule ci-dessus en l'écrivant en notation développée, et en ajoutant les éventuels doublets non liants :

b) Le furanne fait partie de la famille des composés aromatiques. C'est une molécule parfaitement plane.

Cette propriété est liée à la conjugaison de certains doublets. Entourer tous les doublets impliqués dans cette conjugaison sur la molécule écrite à la question précédente.

Trois doublets sont conjugués (entourée en orange) : le doublet pi de chaque liaison double et un doublet non liant de O.

En écrivant au moins deux autres formules mésomères, montrer que ces doublets sont bien conjugués :

3) Conformations du butane

a) Écrire le butane en notation topologique :



b) Représenter en projection de Newman et en projection de Cram la conformation la plus stable du butane, lors de la rotation autour de la liaison C-C centrale (on notera « CH_3 » les groupes méthyle terminaux). Comment nomme-t-on cette conformation particulière?

nom de cette conformation : conformation anti

c) Représenter en projection de Newman et en projection de Cram la conformation la moins stable du butane, lors de la rotation autour de la liaison C-C centrale (on notera « CH_3 » les groupes méthyle terminaux).

Pour quelles raisons cette conformation est-elle beaucoup moins stable que celle de la question précédente ?

car une conformation éclipsée est intrinsèquement moins stable qu'une conformation décalée;
car les groupes méthyle sont en situation de forte répulsions stérique (c'est la conformation où ils sont les plus proches).